
Comparative Study of DECIM-128 and DECIMV2
in relation to Compact Hash-based Message

Authentication Code
P.Venkateswara Rao, K.Seetha Devi, CH.V. Phani Krishna, Dr. K.Subrahmanyam

CSE Department, KL University, Guntur Dt., India.

Abstract— constructing compact HMAC (Hash-based Message
Authentication Code) is required to maintain integrity and
authentication in computationally constrained environments like
Wireless sensor networks and RFID. DECIM is a hardware
oriented stream cipher submitted to the ECRYPT stream cipher
project. It is highly scrutinized stream cipher and is portable to
implement hashing for highly compact MAC, which is required
to achieve efficiency, while not sacrificing security. In this paper,
we present advantages of DECIM-128 when compared to
DECIMv2 in implementation as hashing in HMAC.

Keywords— Stream cipher, DECIMv2, DECIM-128, eSTREAM,
compact HMAC, Decimation, LFSR, ABSG.

I. INTRODUCTION

When we are talking about ”Authentication in
computationally Constrained Environment”, it is very difficult
to implement popular authentication techniques like MD5 and
SHA-1. Because they require resources that cannot be
provided in constrained environments like Wireless Sensor
Networks and RFID [1]. One solution for this is ”COMPACT
HMAC” implementation in constrained environment [4].

This Compact MAC is build by implementing “MAC based
on Stream Cipher”. This offers high efficiency and possibly
consuming minimal resource while being highly secured.
These approaches concern ’stream - Cipher- Based Designs’
dedicated to MAC implementation combining hashing and
encryption within an integrated solution [2], [6], [9], and [11].

Benjamin Arazi already described the ways of interacting a
one way block transformation based on stream ciphering, for
the purpose of performing a general hash, shown in Figure.1.
[4].

One of the best stream cipher algorithm that is suitable for
constrained environments are DECIMv2 which was developed
by a team of thirteen researchers from various industrial and
academic French Institutes.

Two main reasons selecting this topic are: Firstly, it
implements a principle whereby the key consists of a secret
part (k) and an initializing public value (IV). This suits very
well with the hashing produce implemented with interacting
one way block transformation and the security considerations
like correlation, collision attacks and related key attacks.
Secondly, the size of the parameters suits the practical
applications intended to be served by the HMAC proposed
with stream cipher. But DECIMv2 has some draw backs that
can be overcome with DECIM-128. This is submitted as
‘eSTREAM PHASE-3” [8].

This paper makes an attempt to give a comparative view of
DECIM-128 and DECIMv2.We will study this comparison
with respect to DECIM keystream generation(shown in Figure
2) derived from DECIM-128 AND DECIMv2 [7].

II. DESCRIPTION OF DECIM-128 IN COMPARISON

WITH DECIMV2.

A. Key Stream Generation

Key stream Generation Mechanism is given below for
DECIM. The difference comes with the bits of the internal
state of the LFSR. DECIMv2 is numbered from 0 to 191 and
they are denoted by (X0,…….,X191) as well as DECIM-128
is numbered from 0 to 287 and they are denoted by
(X0 ,…….,X287).

The sequence of the line feedback value of the LFSR is
denoted by S= (St) t ≥ 0. The feed back polynomial of DECIM-
128 has the same weight as that of DECIMv2.

P.Venkateswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2804-2806

2804

B. The filtered LFSR

This section describes the difference between DECIM-128
and DECIMv2 filtered LFSR that generates the sequence ‘y’
(i.e. is an input to ABSG mechanism).

1) The LFSR: LFSR of length 288 compared to DECIMv2
that is 192 over F2.This is shown by the following primitive
feedback polynomial:

For DECIMv2:

P(X) = X192 + X189 + X188 + X169 + X156 + X155 + X132 + X131 +
 X94 + X77 + X46+X17 + X16 + X5 + 1

For DECIM-128:

P(X) = X288 + X285 + X284 + X247 + X204 + X185 + X154 + X125 +
 X124 + X123 +X82+X35 + X18 + X5 + 1.

The recursion that corresponding to P for the LFSR is in
DECIM-128

st+288 =st+283 St+270 st+253 st+206 st+165 st+164 st+163

 st+134 st+103 st+84 st+41 st+4 st+3 st.

And in DECIMv2

st+192 = st+187 st+176 st+175 st+146 st+115 st+98 st+61

 st+60 st+37 st+36 st+23 st+4 st+3 st.

2) The Filter: The Filter function is the 14- Variable
Boolean function defines by

F: F2

14
 F2; a1, a14 │ f (a1, a13) a14

 Where f is the symmetric quadratic Boolean function

defined by:

The filter F is a 13-variable quadratic symmetric function

which is balanced.
The only difference between DECIMv2 and DECIM-128

regarding the filter is a different choice of tap positions.

For DECIM-128

287,276,263,244,227,203,187,159,120,73,51,39,21,1.

For DECIMV2

191,186,178,172,162,144,111,104,65,54,45,28,13,1

And the input of the ABSG at the stage t is thus:

yt = f (st+287, st+276, st+263, st+244, st+227, st+203, st+187, st+159, st+120,
 st+73, st+51, st+39, st+21) st+1.

yt = f (st+191, st+186, st+178, st+172, st+162, st+144, st+111, st+104, st+65,
 st+54, st+45, st+28, st+13) st+1

The sequence `y’ is produced by the filter is of maximum
non linear complexity, namely Equal to 288x289/2 =41616.

C. Decimation:

Here there is no change in DECIM-128 compared to
DECIMv2.This part describes how the key stream sequence`
Z’ is obtained from the sequence `y’. One more interesting
fact that the security of DECIM rely more on the length of the
involved LFSR than on the ABSG algorithm [12].

D. Buffer Mechanism

The rate of the ABSG mechanism is irregular. Therefore,
we use a buffer in order to guarantee a constant throughput.
For DECIM-128, we choose a buffer of 64 bits, instead of 32
in DECIMv2. With these parameters the probability that the
buffer is empty while it has to out put one bit less than 2-178
at each step (this is 2-89 in DECIMv2).

If the ABSG outputs one bit when the buffer is full, then
the newly computed bit is not added into the queue, i.e. it is
dropped.

E. key/ IV setup

This subsection describes the computation of the initial
inner-state for starting the key stream generation.

1) Initial filling of the LFSR: The secret key `k’ is a 128-

bit and IV is a 128 bit in DECIM-128, where as in DECIMv2
80 bit and 64bit.

In DECIM-128 the number of possible initial values of the
LFSR state is 2256 this size is large compared to DECIMv2.
i.e.,280+64=2144.

2) Update of the LFSR state: (non-linear feedback)This
step consists in updating the LFSR at each clock using the
same nonlinear feedback as in DECIM.
If we denote by `yt‘ the output of `f’ at time `t’ and by `ℓvt’
the linear feedback value t > 0, the feedback bit st+288 is
given by :

St+288 = ℓvt yt.

In DECIM-128 the LFSR is clocked 4x288=1152 times in this
step. This improves 384 clocks for LFSR compared to
DECIMv2. (In this LFSR clocks 768 times).

3) Initial filling of the buffer: The buffer mechanism
guarantees a constant throughput for the keystream.

P.Venkateswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2804-2806

2805

In DECIM-128, 64 bits chosen as buffer intend of 32 bits in
DECIMv2.Like in DECIM, the buffer outputs one bit, exactly
for every 4 bits that are input into the ABSG. With these
parameters, the probability that the buffer is empty while it
has to output one bit is less than 2-178 at each step compared to
2-89 from DECIMv2.

III. ADAPTING DECIM TO DIFFERENT SECURITY

LEVELS

The design of DECIM can be easily adapted to different
key and IV sizes.

Changes in the size of the key & IV impact the following
design choices in DECIM:

1. Linear feedback shift register and buffer lengths.
2. Subsequent choice of the feedback polynomial and of

the filtering function taps.
3. Key and IV injection in the initialization phase [5].

A. Length of the LFSR :

We denote it by `ℓ’ the security parameter. Notice first that,
in order to obtain the desired security with a secret key of
length `ℓ ’ exactly, then the initialization vector should be at
least l-bit long in order to thwart time memory trade-off
attacks [10].

In this case, the length of the LFSR is chosen at least as
being twice the security parameter.

We propose a register length of

B. Length of the Buffer:

The length of the buffer must be such that the probability
that it becomes empty when it has to output one bit is less than

In order to ensure that, we check that the sum is less than

C. Feedback Polynomial and Filter :

Both are same in DECIM. We advise that the filtering
function remains exactly the same, except for the positions of
the taps, for which criteria appear in [10] .We can also check
that the sequence produced by the filter is of maximal
nonlinear complexity (using the Berlekamp-Massey algorithm
[3]), that is equal to Where ` L’ is the length of the
LFSR which is shown as below [7]:

D. Initialization Process:

In DECIM-128 key and IV injection remains same. The
Buffer has to be filled before key stream generation starts.
There are several possibilities, depending on the
implementation:

The usual key stream generation round (without buffer
shifting) can be performed until the buffer is full, with an
upper bound on the number of rounds.

Another possibility is to perform exactly a fixed number of
rounds. Both the upper bound and the fixed numbers are to be
chosen such that the buffer is full with probability at least
at the end of the process.

This is ensured by choosing a number N of rounds such that
we have

Where LB is the length of the buffer.

IV. CONCLUSION:

Implementing Hash transformation for HMAC using
DECIM-128 stream cipher in place of DECIMv2 will provide
more integrity and authentication in devices they have
computationally constrained environment. The required
number of gates is increased in DECIM-128 implementation
compare to DECIMv2. If we compromise with little extra size
for our devices then this is advisable to get more benefit with
respect to integrity and authentication for message
transformation.

REFERENCES
[1] A. Bogdanov, G. Leander, C. Paar, A. Poschmann, M. Robshaw, and

Y.Seurin, “Hash Functions and RFID Tags: Mind the Gap,” Proc.
Workshop Cryptographic Hardware and Embedded Systems
(CHES’08), 2008.

[2] B. Zoltak, “VMPC-MAC: A Stream Cipher Based Authenticated
Encryption Scheme,” Cryptology ePrint Archive, Report 2004/301,2004.

[3] Berlekamp, Elwyn R. (1967). "Factoring Polynomials over Finite
Fields”. Bell Systems Technical Journal 46: 1853–1859. Later
republished in: Berlekamp, Elwyn R. Algebraic Coding Theory.
McGraw Hill.

[4] Benjamin Arazi, "Message Authentication in Computationally
Constrained Environments," IEEE Transactions on Mobile Computing,
vol. 8, no. 7, pp. 968-974, July, 2009.

[5] C. Berbain, O. Billet, A. Canteaut, N. Courtois, B. Debraize, H. Gilbert,
L. Goubin, A. Gouget, L. Granboulan, C. Lauradoux, M. Minier, T.
Pornin, and H. Sibert. Decimv2.In SASC 2006 - Stream Ciphers
Revisited: Workshop Record, Leuven, Belgium, 2006.

[6] D. Whiting, B. Schneier, S. Lucks, and F. Muller, “Phelix—Fast
Encryption and Authentication in a Single Cryptographic Primitive,”
Ecrypt Stream Cipher Project, Report 2005/020, 2005.

[7] eSTREAM Phase 3 Candidates. eSTREAM, ECRYPT Stream Cipher

Project. http://www.ecrypt.eu.org/stream/decimp3.html.
[8]. eStream, Stream cipher project of the European Network of Excellence

in Cryptology ECRYPT, http://www.ecrypt.eu.org/stream.
[9] H. Krawczyk, “LFSR-Based Hashing and Authentication,” Proc. Ann.

Int’l Cryptology Conf. (CRYPTO 94), pp. 129-139, 1994.
[10] Jin Hong and Palash Sarkar. New Applications of Time Memory Data

Tradeoffs. In Ad-vances in Cryptology - ASIACRYPT 2005, Lecture
Notes in Computer Science. Springer-Verlag, 2005.

[11] K. Wirt, “ASC a Stream Cipher with Built in MAC Functionality,” Int’l
J. Computer Science, vol. 2, pp. 131-136, 2007.

[12] Zhang (1)bin.zhang@uni.lu. New Cryptanalysis of Irregularly
Decimated Stream Ciphers. DOI: 10.1007/978-3-642-05445-7_28;
Springer Link Date: Tuesday, November 03, 2009.

P.Venkateswara Rao et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (6) , 2011, 2804-2806

2806

